The arginine attenuator peptide interferes with the ribosome peptidyl transferase center.
نویسندگان
چکیده
The fungal arginine attenuator peptide (AAP) is encoded by a regulatory upstream open reading frame (uORF). The AAP acts as a nascent peptide within the ribosome tunnel to stall translation in response to arginine (Arg). The effect of AAP and Arg on ribosome peptidyl transferase center (PTC) function was analyzed in Neurospora crassa and wheat germ translation extracts using the transfer of nascent AAP to puromycin as an assay. In the presence of a high concentration of Arg, the wild-type AAP inhibited PTC function, but a mutated AAP that lacked stalling activity did not. While AAP of wild-type length was most efficient at stalling ribosomes, based on primer extension inhibition (toeprint) assays and reporter synthesis assays, a window of inhibitory function spanning four residues was observed at the AAP's C terminus. The data indicate that inhibition of PTC function by the AAP in response to Arg is the basis for the AAP's function of stalling ribosomes at the uORF termination codon. Arg could interfere with PTC function by inhibiting peptidyltransferase activity and/or by restricting PTC A-site accessibility. The mode of PTC inhibition appears unusual because neither specific amino acids nor a specific nascent peptide chain length was required for AAP to inhibit PTC function.
منابع مشابه
Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide.
Specific regulatory nascent chains establish direct interactions with the ribosomal tunnel, leading to translational stalling. Despite a wealth of biochemical data, structural insight into the mechanism of translational stalling in eukaryotes is still lacking. Here we use cryo-electron microscopy to visualize eukaryotic ribosomes stalled during the translation of two diverse regulatory peptides...
متن کاملAfter the ribosome structures: how does peptidyl transferase work?
Atomic resolution crystal structures of the large subunit published since the middle of August 2000 prove that the peptidyl transferase center of the ribosome, which is the site of peptide-bond formation, is composed entirely of RNA; the ribosome is a ribozyme. They also demonstrate that alignment of the CCA ends of ribosome-bound peptidyl tRNA and aminoacyl tRNA in the peptidyl transferase cen...
متن کامل23S rRNA positions essential for tRNA binding in ribosomal functional sites.
rRNA plays an important role in function of peptidyl transferase, the catalytic center of the ribosome responsible for the peptide bond formation. Proper placement of the peptidyl transferase substrates, peptidyl-tRNA and aminoacyl-tRNA, is essential for catalysis of the transpeptidation reaction and protein synthesis. In this report, we define a small set of rRNA nucleotides that are most like...
متن کاملRibosomal features essential for tna operon induction: tryptophan binding at the peptidyl transferase center.
Features of the amino acid sequence of the TnaC nascent peptide are recognized by the translating ribosome. Recognition leads to tryptophan binding within the translating ribosome, inhibiting the termination of tnaC translation and preventing Rho-dependent transcription termination in the tna operon leader region. It was previously shown that inserting an adenine residue at position 751 or intr...
متن کاملChanges produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
Studies in vitro have established that free tryptophan induces tna operon expression by binding to the ribosome that has just completed synthesis of TnaC-tRNA(Pro), the peptidyl-tRNA precursor of the leader peptide of this operon. Tryptophan acts by inhibiting Release Factor 2-mediated cleavage of this peptidyl-tRNA at the tnaC stop codon. Here we analyze the ribosomal location of free tryptoph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 32 13 شماره
صفحات -
تاریخ انتشار 2012